Objective

 The student will be able to:use the Pythagorean Theorem

What is a right triangle?

right angle
leg
It is a triangle which has an angle that is $\mathbf{9 0}$ degrees.
The two sides that make up the right angle are called legs.
The side opposite the right angle is the hypotenuse.

The Pythagorean Theorem

In a right triangle, if a and b are the measures of the legs and c is the hypotenuse, then

$$
a^{2}+b^{2}=c^{2}
$$

Note: The hypotenuse, c , is always the longest side.

Find the length of the

hypotenuse if

1. $\mathrm{a}=12$ and $\mathrm{b}=16$.

$$
12^{2}+16^{2}=c^{2}
$$

$$
144+256=c^{2}
$$

$$
400=c^{2}
$$

Take the square root of both sides.

$$
\begin{aligned}
\sqrt{400} & =\sqrt{c^{2}} \\
20 & =\mathbf{c}
\end{aligned}
$$

Find the length of the hypotenuse if

2. $a=5$ and $b=7$.

$$
\begin{gathered}
5^{2}+7^{2}=c^{2} \\
25+49=c^{2} \\
74=c^{2}
\end{gathered}
$$

Take the square root of both sides.

$$
\begin{gathered}
\sqrt{74}=\sqrt{c^{2}} \\
8.60=\mathbf{c}
\end{gathered}
$$

Find the length of the hypotenuse given $a=6$ and $b=12$

1. 180
2. 324
3. 13.42
4. 18

Find the length of the leg, to the nearest hundredth, if
3. $\mathrm{a}=4$ and $\mathrm{c}=10$.

$$
\begin{gathered}
4^{2}+b^{2}=10^{2} \\
16+b^{2}=100 \\
\text { Solve for } b \\
16-16+b^{2}=100-16 \\
b^{2}=84 \\
\sqrt{b^{2}}=\sqrt{84} \\
b=9.17
\end{gathered}
$$

Find the length of the leg, to the nearest hundredth, if
4. $\mathrm{c}=10$ and $\mathrm{b}=7$.

$$
\begin{gathered}
\mathrm{a}^{2}+7^{2}=10^{2} \\
\mathrm{a}^{2}+49=100 \\
\text { Solve for } \mathrm{a} . \\
\mathrm{a}^{2}=100-49 \\
\mathrm{a}^{2}=51 \\
\sqrt{a^{2}}=\sqrt{51} \\
\mathrm{a}=7.14
\end{gathered}
$$

Find the length of the missing side given $\mathrm{a}=4$ and $\mathrm{c}=5$

1. 1
2. 3
3. 6.4
4. 9
5. The measures of three sides of a triangle are given below. Determine whether each triangle is a right triangle. $\sqrt{73}, 3$, and 8
Which side is the biggest?
The square root of $73(=8.5)$! This must be the hypotenuse (c).
Plug your information into the Pythagorean Theorem. It doesn't matter which number is a or b .

$$
\begin{gathered}
\text { Sides: } \sqrt{73}, 3, \text { and } 8 \\
3^{2}+8^{2}=(\sqrt{73})^{2} \\
9+64=73 \\
73=73
\end{gathered}
$$

Since this is true, the triangle is a right triangle!! If it was not true, it would not be a right triangle.

Determine whether the triangle is a right triangle given the sides 6,9 , and $\sqrt{45}$

1. Yes
2. No
3. Purple
