Express the equation in exponential form.

1. $\log _{5} 25=2$
2. $\log _{8} 2=1 / 3$

Express the equation in logarithmic form.
3. $5^{3}=125$
4. $8^{-1}=1 / 8$

Evaluate the expression.
5. (a) $\log _{6} 36$
(b) $\log _{9} 81$
(c) $\log _{7} 7^{10}$
6. (a) $\log _{3}(1 / 27)$
(b) $\log _{10} \sqrt{10}$
(c) $\log _{5} 0.2$
7. (a) $2^{\log _{2} 37}$
(b) $3^{\log _{3} 8}$
(c) $e^{\ln \sqrt{5}}$
8. (a) $e^{\ln \pi}$
(b) $10^{\log 5}$
(c) $10^{\log 87}$

Use the definition of the logarithmic function to find x.
9. (a) $\log _{5} x=4$
(b) $\log _{10} 0.1=x$
10. (a) $\log _{4} 2=x$
(b) $\log _{4} x=2$
11. (a) $\log _{x} 1000$
(b) $\log _{x} 25=2$

Use a calculator to evaluate the expression, correct to four decimal places.
12. (a) $\ln 5$
(b) $\ln 25.3$
(c) $\ln (1+\sqrt{3})$
13. (a) $\ln 27$
(b) $\ln 7.39$
(c) $\ln 54.6$

Find the domain of the function.
14. $f(x)=\log _{10}(x+3)$
15. $f(x)=\log _{5}(8-2 x)$

Graph the function. State the domain, range, and asymptote.
16. $f(x)=\log _{2}(x-4)$
17. $y=\log _{3}(x-1)-2$
18. $y=1+\ln (-x)$
19. Draw the graph of $y=4^{x}$, then use it to draw the graph of $y=\log _{4} x$.

Expand the logarithm using the three "Laws" of logarithms 20. $\log _{2}\left(A B^{2}\right)$
21. $\log _{a}\left(x^{2} / y z^{3}\right)$
22. $\ln \left(3 r^{2} s\right)$
23. $\log _{2}\left(x^{2}+1\right) /\left(x^{2}-1\right)$

Use the Laws of Logarithms to combine the expression as a single logarithm.
24. $\log 12+2 \log 7-\log 2$
25. $\log _{5}\left(x^{2}-1\right)-\log _{5}(x-1)$

Use the Change of Base Formula and a calculator to evaluate the logarithm, correct to six decimal places. Use either natural or common logarithms.
30. $\log _{2} 5$
31. $\log _{5} 2$

