Unit 2 Proving Pythagorean Theorem Lesson

Lesson 1.7.3: Proving the Pythagorean Theorem Using Similarity

Warm-Up 1.7.3

Woodworkers must accurately cut and assemble each piece of wood to ensure that a project is "square." Every vertical piece should intersect every horizontal piece at a 90° angle. To determine if a project is square, woodworkers use the Pythagorean Theorem, which states that the sum of the squares of the two legs of a right triangle is equal to the square of the longest side. If the lengths of the diagonals are equal, then the project is square. Use the diagram below of a door to solve the problems that follow.

1. A woodworker measured the length of one diagonal of the wooden door, $\overline{B D}$, to be 212 cm . The woodworker measured the length of $\overline{A D}$ to be 198 cm and the length of $\overline{D C}$ to be 76 cm . Calculate the length of $\overline{A C}$.
2. Is $\overline{B D}$ congruent to $\overline{A C}$?
3. Is the door "square"? Explain your answer.

Types of Proofs

- Paragraph proofs are statements written out in complete sentences in a logical order to show an argument.
- Flow proofs are a graphical method of presenting the logical steps used to show an argument.
- In a flow proof, the logical statements are written in boxes and the reason for each statement is written below the box.
- Another accepted form of proof is a two-column proof.
- Two-column proofs include numbered statements and corresponding reasons that show the argument in a logical order.
- Two-column proofs appear in the Guided Practice examples that follow.

2. Identify the similar triangles.
It is often helpful to redraw the triangles.

3. Create the two-column proof.

Statements	Reasons
1. $\triangle A B C$ with right $\angle C$	1. Given
2. $\triangle A B C \sim \triangle A C D$	2. If the altitude is drawn to the
hypotenuse of a right triangle, then	
$\triangle A B C \sim \triangle C B D$	the two triangles formed are similar to the original triangle and each other.
3. $\frac{c}{a}=\frac{a}{f} ; \frac{c}{b}=\frac{b}{e}$ 3.Definition of similar triangles; corresponding sides are proportional. 4. $c f=a^{2} ; c e=b^{2}$ 4. Multiplication Property of Equality 5. $c f+c e=a^{2}+b^{2}$ 5. Addition Property of Equality 6. $c(f+e)=a^{2}+b^{2}$ 7. Distributive Property of Equality 7. $e+f=c$ 8. Subsment Addition Postulate 8. $c(c)=a^{2}+b^{2}$ or $c^{2}=a^{2}+b^{2}$ 8. Substion Property	

Example 2

Find the length of the altitude, x, of $\triangle A B C$.

Example 3

Find the unknown values in the figure.

Practice 1.7.3: Proving the Pythagorean Theorem Using Similarity

Find the unknown length(s) in each figure.
1.

2.

Unit 2 Proving Pythagorean Theorem Lesson
3.

4.

