Geometric Sequences

$\begin{array}{ll}\text { Recursive Formula } & \text { Explicit Formula } \\ a_{n}=a_{n-1} *(r) \rightarrow \substack{\text { common } \\ \text { ratio }} & a_{n}=a_{1} * r^{n-1}\end{array}$

$$
a_{n}=a_{n-1} \cdot
$$

1. Find the next 3 terms in the geometric sequences below.
a) $\{2,6, \ldots\}$
b) $\{10,5, \ldots\}$
c) $\{12,-6, \ldots\}$
2. Find the $6^{\text {th }}$ term in each of the following geometric sequences.
a) $\{3,6,12,24, \ldots\}$
b) $\{2,10,50, \ldots\}$
c) $\{512,256,128 . .$.
3. Find the $9^{\text {th }}$ term in each of the following geometric sequences.
a) $\{1,3,9,27, \ldots\}$
b) $\{12,18,27, \ldots\}$
c) $\left\{\frac{1}{16},-\frac{1}{8}, \frac{1}{4},-\frac{1}{2} \ldots\right\}$
d) $\left\{\mathrm{a}, \mathrm{ar}, \mathrm{ar}^{2}, \ldots\right\}$
4. Consider the sequence $\{5,10,20,40, \ldots\}$
a) Show that the sequence is geometric.
b) Find the equation for the general term.
c) Find the value of the $15^{\text {th }}$ term.
5. Consider the sequence $\left\{12,-6,3,-\frac{3}{2}, \ldots\right\}$
a) Show that the sequence is geometric.
b) Find the equation for the general term.
c) Find the value of the $13^{\text {th }}$ term (as a fraction).
6. Find k given that the following sequences are geometric.
a) $\{7, k, 28 \ldots\}$
b) $\{k, 3 k, 20-k, . .$.
c) $\{k, k+8,9 k \ldots\}$
7. a) $18,54,162$
b) $2.5,1.25,0.625$ c) $3,-1.5,0.75$
8. a) $r=-\frac{1}{2}$
b) $u_{n}=12\left(-\frac{1}{2}\right)^{n-1}$
c) $u_{13}=\frac{3}{1024}$
9. a) 96 b) 6250 c) 16
10. a) ± 14 b) 2 c) -2 or 4
$\begin{array}{llll}\text { 3. a) } 6561 & \text { b) } \frac{19683}{64} & \text { c) } 16 & \text { d) } a r^{8}\end{array}$
11. a) $u_{n}=3(2)^{n-1}$
b) $u_{n}=10(\pm \sqrt{2})^{1-n}$
$\begin{array}{lll}\text { 4. a) } r=3 & \text { b) } u_{n}=5(2)^{n-1} & \text { c) } u_{15}=81920\end{array}$
