1. \quad Simplify and combine like terms: $-18 x+3(2 x-8)-9 x-(4-6 x)$
2. Multiply: $\left(2 z^{3}-4 z^{2}+6 z-1\right)(3 z+2)$
3. Multiply: $(2 a+3)\left(4 a^{2}-6 a+9\right)$
4. Multiply: $(5 x-2)(3 x+4)$
5. $3^{\sqrt{25}}=$
6. $\frac{6^{2} y^{3} z^{5}}{6^{4} y^{2} z^{7}}=$
7. $\frac{5^{0}\left(x^{2}\right)^{3} y}{5 x\left(y^{2}\right)^{5}}=$
8. $\frac{7 a^{3}(b+c)^{2}}{14 a(b+c)}=$
9. $\quad 3^{2^{4}}=$
10. $16^{\frac{5}{4}}=$
11. Simplify. All exponents must be positive.

$$
\left(\frac{x^{-\frac{3}{5}} z^{-1}}{2^{-2} z^{-\frac{1}{2}} x}\right)^{-1}=
$$

12. Solve: $7 \mathrm{z}-3 \mathrm{z}+12-5=8 \mathrm{z}+7$
13. Solve: $-4(3+2 m)-m=-3 m$
14. Solve for $\mathrm{x}: ~ \mathrm{Q}=3 \mathrm{x}+2 \mathrm{y}+4 \mathrm{z}$
15. Solve for $\mathrm{x}: 4^{\mathrm{x}}=8^{\mathrm{x}-3}$
16. Scott Hardy invested some money at 12% and $\$ 4000$ less than this amount at 14%. Find the amount invested at each rate if his total annual interest income is $\$ 4,120$.
17. A pharmacist needs 100 liters of a 50% alcohol solution. She has a 30% alcohol solution and an 80% alcohol solution that she can mix. How many liters of each does she need?
18. Two people need to sort a pile of bottles at the recycling center. Working alone, one person could do the entire job in 9 hours, and the other person could do the entire job in 6 hours. How long would it take them to complete the job if they work together?
19. Solve the system: $2 x+3 y=10$

$$
-3 x+2 y=11
$$

20. Solve the system: $3 x+4 y=8$

$$
6 x=7-8 y
$$

21. Steve and Ross must paint Steve's entire house. Steve bought 3 gallons of paint and 2 brushes at one store for $\$ 48$. Ross bought 5 gallons of paint and 1 brush at another store for $\$ 66$. Assuming the price per gallon and cost per brush were the same at both stores, find what they paid per gallon for paint and the cost per brush.
22. Solve: $\frac{2 q+1}{3}-\frac{q-1}{4}=-2$
23. Solve: $5 x^{2}-3 x=0$
24. Find the roots of the following equation by factoring: $10 x^{2}-13 x=3$
25. Find the roots of the following equation using the quadratic formula:

$$
2 x^{2}+3 x=10
$$

26. Find the roots of the following equation: $(2 x+1)(x-2)=-3$
27. Solve: $\frac{y}{3}-\frac{y}{7}=1$
28. Solve: $\frac{1}{m+4}-\frac{3}{2 m+8}=\frac{1}{2}$
29. Rationalize the denominator and simplify: $\frac{-6 \sqrt{3}}{\sqrt{2}}$
30. Multiply and combine like terms: $(2 x+3)^{2}$
31. Multiply and combine like terms: $(2 x+3)^{2}-(x+2)^{2}$
32. Evaluate the following expression if $\mathrm{x}=3$ and $\mathrm{y}=-2$.

$$
3 x^{2} y-4 x y^{2}
$$

33. Find the distance between the point $(-4,-2)$ and the point $(6,-1)$.
34. Divide: $\frac{8 m^{4}-6 m^{3}+2 m}{2 m}$
35. Divide: $\left(15 p^{2}+11 p-17\right) \div(3 p-2)$
36. What quadrant is the point $(-3,10)$ in?
37. Reduce, if possible: $\frac{6 x^{2}+7 x-5}{3 x+5}$
38. Multiply: $\frac{2 p^{2}-5 p-12}{5 p^{2}-18 p-8} \cdot \frac{25 p^{2}-4}{30 p-12}$
39. Divide: $\frac{25 p^{3} q^{2}}{8 p^{4} q} \div \frac{15 p q^{2}}{16 p^{5}}$
40. Divide: $\left(\mathrm{y}^{2}+2 \mathrm{y}\right) \div \frac{y+5}{y^{2}+4 y-5}$
41. Combine: $\frac{3}{t-2}-\frac{5}{2-t}$
42. Combine: $\frac{2}{y+1}+\frac{6}{y-1}$
43. Combine: $\frac{3 r}{10 r^{2}-3 r s-s^{2}}+\frac{2 r}{2 r^{2}+r s-s^{2}}$
44. Simplify: $\frac{\frac{3}{x}-5}{6+\frac{1}{x}}$
45. Sketch the graph of the line $3 x-y=4$.
46. If the slope, m, of line is $\frac{1}{2}$, and the y - intercept is at $(0,3)$, what is the equation of the line? Express the answer in slope-intercept form.
47. What is the slope of the line between the two points $(4,-3)$ and $(-2,-1)$?
48. What is the equation of the line with slope $=\frac{2}{3}$ and containing point $(2,-1)$? Express the answer in standard form.
49. What is the equation of the line which goes through the two points $(3,5)$ and $(-1,0)$? Express the answer in standard form.
50. Sketch the graph of the line $y=-2$.
51. Solve $\sqrt{x+2}=x-4$
52. Solve $|\mathrm{x}-2|<3$
53. $4!=$
54. Solve $-3 x>12+x$

SOLUTIONS FOR INTERMEDIATE ALGEBRA ASSESSMENT TEST

1. $-18 \mathrm{x}+3(2 \mathrm{x}-8)-9 \mathrm{x}-(4-6 \mathrm{x})$

Use the distributive law to remove parentheses:
$-18 x+6 x-24-9 x-4+6 x$
Combine like terms: $-15 \mathrm{x}-28$
2. Multiply vertically to easily line up like terms:

$$
\begin{aligned}
& 2 z^{3}-4 z^{2}+6 z-1 \\
& \frac{3 z+2}{} \\
& \hline 6 z^{4}-12 z^{3}+18 z^{2}-3 z \\
& \frac{4 z^{3}-8 z^{2}+12 z-2}{6 z^{4}-8 z^{3}+10 z^{2}+9 z-2}
\end{aligned}
$$

3. Multiply vertically as in \#2.

$$
\begin{aligned}
& 4 a^{2}-6 a+9 \\
& \begin{array}{l}
2 a+3 \\
8 a^{3}-12 a^{2}+18 a \\
+12 a^{2}-18 a+27
\end{array} \\
& \hline 8 a^{3} \quad+27
\end{aligned}
$$

answer: $8 a^{3}+27$
4. Multiply using the acronym FOIL (firsts, outsides, insides, lasts)

$$
\begin{aligned}
(5 x-2)(3 x+4) & =15 x^{2}+20 x-6 x-8 \\
& =15 x^{2}+14 x-8
\end{aligned}
$$

5. $3^{\sqrt{25}}=3^{5}=3 \cdot 3 \cdot 3 \cdot 3 \cdot 3=243$
6. When dividing, the base stays the same and you subtract exponents negative exponents then go to the denominator:

$$
\frac{6^{2} y^{3} z^{5}}{6^{4} y^{2} z^{7}}=\frac{y}{6^{2} z^{2}}=\frac{y}{36 z^{2}}
$$

7. When raising a power to a power, you multiply exponents. Any non-zero expression raised to the zero power is 1 .

$$
\frac{5^{0}\left(x^{2}\right)^{3} y}{5 x\left(y^{2}\right)^{5}}=\frac{1 x^{6} y}{5 x y^{10}}=\frac{x^{5}}{5 y^{9}}
$$

8. $\frac{7 a^{3}(b+c)^{2}}{14 a(b+c)}=\frac{a^{2}(b+c)}{2}$

$$
\frac{(b+c)^{2}}{b+c} \text { works exactly like } \frac{x^{2}}{x} . \text { Just as } \frac{x^{2}}{x}=\mathrm{x}, \frac{(b+c)^{2}}{b+c}=(\mathrm{b}+\mathrm{c})^{1} \text { or }(\mathrm{b}+\mathrm{c})
$$

9. $3^{2^{4}}=3^{16}$
10. $16^{\frac{5}{4}}$ means the $4^{\text {th }}$ root of 16 to the $5^{\text {th }}$ power:

$$
(\sqrt[4]{16})^{5}=2^{5}=32
$$

11. Remember, to raise a power to a power, multiply exponents.
$\left(\frac{x^{-\frac{3}{5}} z^{-1}}{2^{-2} z^{-\frac{1}{2}} x}\right)^{-1}=\frac{x^{\frac{3}{5}} z^{1}}{2^{2} z^{\frac{1}{2}} x^{-1}}$
The x^{-1} must go to the numerator and become x^{1} :

$$
\frac{x^{\frac{3}{5}} x^{1} z^{1}}{4 z^{\frac{1}{2}}}
$$

When multiplying, add exponents. When dividing, subtract exponents.

$$
=\frac{x^{\frac{8}{5}} z^{\frac{1}{2}}}{4}
$$

12. $7 \mathrm{z}-3 \mathrm{z}+12-5=8 \mathrm{z}+7$

Combine like terms:
$4 z+7=8 z+7$
Add -4 z to both sides: $7=4 \mathrm{z}+7$
Add -7 to both sides: $0=4 z$
Divide both sides by 4: $0=z$
13. $-4(3+2 m)-m=-3 m$

Use the distributive law to remove parentheses:
$-12-8 m-m=-3 m$
$-12-9 m=-3 m$
Add 9 m to both sides: $-12=6 \mathrm{~m}$
Divide both sides by 6: $-2=\mathrm{m}$
14. $\mathrm{Q}=3 \mathrm{x}+2 \mathrm{y}+4 \mathrm{z}$

Add $-2 y-4 z$ to both sides in order to isolate the term containing the unknown, x :
$Q-2 y-4 z=3 x$
Divide both sides by $3: \frac{Q-2 y-4 z}{3}=\mathrm{x}$
15. $4^{\mathrm{x}}=8^{\mathrm{x}-3}$

Rewrite 4 and 8 as powers of 2: $\left(2^{2}\right)^{x}=\left(2^{3}\right)^{x-3}$
When raising a power to a power, you multiply exponents: $2^{2 x}=2^{3 x-9}$
Hence, $2 \mathrm{x}=3 \mathrm{x}-9$

$$
\begin{array}{r}
-x=-9 \\
x=9
\end{array}
$$

16. Let $\mathrm{x}=$ the amount of money invested at 12%.
$x-4000=$ the amount of money invested at 14%.
Then, $.12 \mathrm{x}+.14(\mathrm{x}-4000)=4120$
Multiply each term by 100 to remove decimal points:
$12 x+14(x-4000)=412,000$
$12 x+14 x-56000=412,000$
$26 x=468,000$
$x=18,000$
He invested $\$ 18,000$ at 12% and $\$ 14,000$ at 14%
17. Let $x=$ amount of 30% alcohol solution.
$y=$ amount of 80% alcohol solution.
Equate amount of solution: $x+y=100$
Equate amount of alcohol: $.30 \mathrm{x}+.80 \mathrm{y}=.50(100)$

$$
\text { or } 30 x+80 y=50(100)
$$

If $x+y=100$, then $y=100-x$

$$
\begin{aligned}
30 \mathrm{x}+80(100-\mathrm{x}) & =5000 \\
30 \mathrm{x}+8000-80 \mathrm{x} & =5000 \\
-50 \mathrm{x} & =-3000 \\
\mathrm{x} & =60
\end{aligned}
$$

She needs 60 liters of the 30% solution and 40 liters of the 80% solution.
18. First person takes 9 hours.

Second person takes 6 hours.
Together they take x hours.
Equate what can be done in 1 hour.

$$
\frac{1}{9}+\frac{1}{6}=\frac{1}{x}
$$

Multiply both sides by the L. C. D. $=18 \mathrm{x}$:

$$
\begin{aligned}
& 2 x+3 x=18 \\
& 5 x=18 \\
& x=\frac{18}{5} \text { or } 3 \frac{3}{5}
\end{aligned}
$$

Together it would take $3 \frac{3}{5}$ hours.
19. $2 x+3 y=10$
$-3 x+2 y=11$
Multiply the top equation by 3 and the bottom by 2 so that the x terms will be eliminated.

$$
\begin{aligned}
6 x+9 y & =30 \\
-6 x+4 y & =22 \\
\hline 13 y & =52 \\
y & =4
\end{aligned}
$$

```
Substitute \(y=4\) in the first equation:
\(2 x+3(4)=10\)
\(2 x+12=10\)
\(2 \mathrm{x}=-2\)
\(\mathrm{x}=-1\)
```

20. $3 x+4 y=8$
$6 x=7-8 y$
In the second equation add 8 y to both sides to get it in standard form:

$$
\begin{aligned}
& 3 x+4 y=8 \\
& 6 x+8 y=7
\end{aligned}
$$

Multiply the top equation by -2 :

$$
\begin{array}{r}
-6 x-8 y=-16 \\
6 x+8 y=7 \\
\hline 0=-9
\end{array}
$$

That cannot happen. The lines are parallel and the system is inconsistent.
21. Let $\mathrm{g}=$ price for one gallon of paint

Let $\mathrm{b}=$ price for one brush

$$
\begin{aligned}
& 3 g+2 b=48 \\
& 5 g+b=66
\end{aligned}
$$

In the second equation: $b=66-5 \mathrm{~g}$. Substitute this into the top equation:

$$
\begin{aligned}
& 3 g+2(66-5 g)=48 \\
& 3 g+132-10 g=48 \\
& -7 g+132=48 \\
& -7 g=-84 \\
& g=12 \\
& b=66-5 g=66-5(12)=66-60=6
\end{aligned}
$$

A gallon of pain costs $\$ 12$; one brush costs $\$ 6$.
22. $\frac{2 q+1}{3}-\frac{q-1}{4}=-2$

Multiply both sides by 12 to eliminate the denominators:

$$
\begin{aligned}
4(2 q+1)-3(q-1) & =-2(12) \\
8 q+4-3 q+3 & =-24 \\
5 q+7 & =-24 \\
5 q & =-31 \\
q & =-\frac{31}{5}
\end{aligned}
$$

23. $5 x^{2}-3 x=0$

Factor out the common factor of $x: x(5 x-3)=0$
The product of two factors is 0 , and hence one of the factors is 0 :
$\mathrm{x}=0$ or $5 \mathrm{x}-3=0$ $5 \mathrm{x}=3$

$$
x=\frac{3}{5}
$$

24. $10 x^{2}-13 x=3$

Add -3 to both sides so that 0 is on one side of the equation:
$10 x^{2}-13 x-3=0$
Factor the left hand side:
$(5 \mathrm{x}+1=0)(2 \mathrm{x}-3)=0$
The product of two factors is 0 , and hence one of the factors is 0 :
$5 \mathrm{x}+1=0$ or $2 \mathrm{x}-3=0$
$5 x=-1 \quad 2 x=3$
$x=-\frac{1}{5} \quad x=\frac{3}{2}$
25. $2 x^{2}+3 x=10$

Add -10 to both sides so that 0 is on one side of the equation:
$2 x^{2}+3 x-10=0$
The quadratic formula says that in the quadratic equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$,
$\mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
In the given equation, then, $\mathrm{a}=2, \mathrm{~b}=3$, and $\mathrm{c}=-10$
$x=\frac{-3 \pm \sqrt{3^{2}-4(2)(-10)}}{2(2)}=\frac{-3 \pm \sqrt{9+80}}{4}=\frac{-3 \pm \sqrt{89}}{4}$
26. $(2 x+1)(x-2)=-3$

First multiply the 2 binomials:
$2 x^{2}-3 x-2=-3$
Add 3 to both sides:
$2 \mathrm{x}^{2}-3 \mathrm{x}+1=0$
Factor: $(2 \mathrm{x}-1)(\mathrm{x}-1)=0$
$2 \mathrm{x}-1=0$ or $\mathrm{x}-1=0$
$2 \mathrm{x}=1 \quad \mathrm{x}=1$
$\mathrm{x}=\frac{1}{2}$
27. $\frac{y}{3}-\frac{y}{7}=1$

Multiply both sides by 21 :
$7 y-3 y=21$
$4 \mathrm{y}=21$
$\mathrm{y}=\frac{21}{4}$
28. $\frac{1}{m+4}-\frac{3}{2 m+8}=-\frac{1}{2}$

Factor the denominators, wherever possible:

$$
\frac{1}{m+4}-\frac{3}{2(m+4)}=-\frac{1}{2}
$$

Multiply both sides by the L. C. D. of $2(\mathrm{~m}+4)$:

$$
\begin{aligned}
1(2)-3 & =-1(m+4) \\
2-3 & =-m-4 \\
3 & =-m \\
-3 & =m
\end{aligned}
$$

29. $\frac{-6 \sqrt{3}}{\sqrt{2}}$

Multiply numerator and denominator by $\sqrt{2}$:

$$
\frac{-6 \sqrt{3}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{-6 \sqrt{6}}{2}=-3 \sqrt{6}
$$

30. $\begin{aligned}(2 x+3)^{2}=(2 x+3)(2 x+3) & =4 x^{2}+6 x+6 x+9 \\ & =4 x^{2}+12 x+9\end{aligned}$
31. $(2 x+3)^{2}-(x+2)^{2}$

From problem \#30 $(2 x+3)^{2}=4 x^{2}+12 x+9$
Then, $(x+2)^{2}=(x+2)(x+2)=x^{2}+2 x+2 x+4=x^{2}+4 x+4$

$$
\begin{aligned}
(2 \mathrm{x}+3)^{2}-(\mathrm{x}+2)^{2} & =4 \mathrm{x}^{2}+12 \mathrm{x}+9-\left(\mathrm{x}^{2}+4 \mathrm{x}+4\right) \\
& =4 \mathrm{x}^{2}+12 \mathrm{x}+9-\mathrm{x}^{2}-4 \mathrm{x}-4 \\
& =3 \mathrm{x}^{2}+8 \mathrm{x}+5
\end{aligned}
$$

32. $3 x^{2} y-4 x y^{2}$

If $x=3$ and $y=-2$, then the problem becomes:
$3(3)^{2}(-2)-4(3)(-2)^{2}=$
$3(9)(-2)-4(3)(4)=$
$-54-48=-102$
33. The distance between points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is given by the formula:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

The given points are $(-4,-2)$ and $(6,-1)$
$x_{1}=-4 ; \quad x_{2}=6$
$y_{1}=-2 ; \quad y_{2}=-1$
Notice that $x_{2}-x_{1}=6-(-4)=6+4=10$

$$
y_{2}-y_{1}=-1-(-2)=-1+2=1
$$

Therefore, $d=\sqrt{10^{2}+1^{2}}=\sqrt{100+1}=\sqrt{101}$
34. $\frac{8 m^{4}-6 m^{3}+2 m}{2 m}=\frac{8 m^{4}}{2 m}-\frac{6 m^{3}}{2 m}+\frac{2 m}{2 m}=4 m^{3}-3 m^{2}+1$
35. $3 \mathrm{p}-2 \frac{5 p+7+\frac{-3}{3 p-2}}{15 p^{2}+11 p-17}$

$$
15 p^{2}-10 p
$$

$$
\begin{array}{r}
21 p-17 \\
\frac{21 p-14}{-3}
\end{array}
$$

36. Quadrant II
37. $\frac{6 x^{2}+7 x-5}{3 x+5}=\frac{(3 x+5)(2 x-1)}{3 x+5}=2 x-1$
38. $\frac{2 p^{2}-5 p-12}{5 p^{2}-18 p-8} \cdot \frac{25 p^{2}-4}{30 p-12}=\frac{(2 p+3)(p-4)}{(5 p+2)(p-4)} \cdot \frac{(5 p-2)(5 p+2)}{6(5 p-2)}=\frac{2 p+3}{6}$
39. $\frac{25 p^{3} q^{2}}{8 p^{4} q} \div \frac{15 p q^{2}}{16 p^{5}}$

To divide fraction, invert the divisor and multiply:

$$
\begin{gathered}
5 \mathrm{p}^{2} 22 \mathrm{p} \\
\frac{25 p^{3} q^{2}}{8 p^{4} q} \cdot \frac{16 p^{5}}{15 p q^{2}}=\frac{10 p^{3}}{3 q}
\end{gathered}
$$

$$
3
$$

40. To divide fractions, invert the divisor and multiply:
$\left(y^{2}+2 y\right) \div \frac{y+5}{y^{2}+4 y-5}=\left(y^{2}+2 y\right) \cdot \frac{y^{2}+4 y-5}{y+5}$
$=y(y+2) \cdot \frac{(y+5)(y-1)}{y+5}=y(y+2)(y-1)$
41. $\frac{3}{t-2}-\frac{5}{2-t}$

Note that $2-\mathrm{t}=(-1)(\mathrm{t}-2)$. The problem can then be written:
$\frac{3}{t-2}-\frac{5}{(-1)(t-2)}$
The two negatives become positive: $=\frac{3}{t-2}+\frac{5}{t-2}=\frac{8}{t-2}$
42. $\frac{2}{y+1}+\frac{6}{y-1}$

The L. C. D. is $(y+1)(y-1): \frac{2(y-1)}{(y+1)(y-1)}+\frac{6(y+1)}{(y+1)(y-1)}$
$=\frac{2 y-2+6 y+6}{(y+1)(y-1)}=\frac{8 y+4}{(y+1)(y-1)}$ or $\frac{4(2 y+1)}{(y+1)(y-1)}$
43. $\frac{3 r}{10 r^{2}-3 r s-s^{2}}+\frac{2 r}{2 r^{2}+r s-s^{2}}$

Factor the denominators:
$\frac{3 r}{(5 r+s)(2 r-s)}+\frac{2 r}{(2 r-s)(r+s)}$
The L. C. D. is $(5 r+s)(2 r-s)(r+s)$
$\frac{3 r(r+s)}{(5 r+s)(2 r-s)(r+s)}+\frac{2 r(5 r+s)}{(2 r-s)(r+s)(5 r+s)}$
$=\frac{3 r^{2}+3 r s+10 r^{2}+2 r s}{(5 r+s)(2 r-s)(r+s)}=\frac{13 r^{2}+5 r s}{(5 r+s)(2 r-s)(r+s)}$
44. $\frac{\frac{3}{x}-5}{6+\frac{1}{x}}$

In the numerator, the L. C. D. is x and it becomes:
$\frac{3-5 x}{x}$
Similarly, the denominator is:
$\frac{6 x+1}{x}$
Invert the denominator, and multiply:
$\frac{3-5 x}{x} \cdot \frac{x}{6 x+1}=\frac{3-5 x}{6 x+1}$
45. $3 x-y=4$

One way to sketch this is to plot 3 points and then connect the points.

1) If $x=0$, then $y=-4$.
2) If $x=1$, then $y=-1$.
3) If $x=2$, then $y=2$.

46. Slope-intercept form is $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ where m is the slope and b is the y -intercept. This problem states that the slope is $\frac{1}{2}$ and the y-intercept in at $(0,3)$. Hence, the equation is:

$$
y=\frac{1}{2} x+3
$$

47. Slope is defined to be:
$m=\frac{\text { change }}{\text { change }} \frac{\text { in }}{x} \frac{y}{x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Given the point $(4,-3)$ and $(-2,-1)$:
$m=\frac{-3-(-1)}{4-(-2)}=\frac{-3+1}{4+2}=\frac{-2}{6}=\frac{-1}{3}$
48. The point-slope form of an equation is:
$\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)=\mathrm{y}-\mathrm{y}_{1}$
Given $\mathrm{m}=\frac{2}{3}$ and the point $=(2,-1)$, the equation is:
$\frac{2}{3}(x-2)=y-(-1)$
$\frac{2}{3} x-\frac{4}{3}=y+1$
Multiply by 3 :
$2 x-4=3 y+3$
$2 x-3 y=7$
49. Pts: $(3,5)$ and $(-1,0)=$ The slope, $m,=\frac{5-0}{3-(-1)}=\frac{5}{3+1}=\frac{5}{4}$

Using point $(-1,0)$ and the point-slope form from problem 48 :
$\frac{5}{4}(x+1)=y-0$
$\frac{5}{4} x+\frac{5}{4}=y$
$5 x+5=4 y$
$5 x-4 y=-5$
50. Since y is always equal to -2 , the graph is a horizontal line 2 units below the x -axis.

51. Solve $\sqrt{x+2}=x-4$ Since a square root is involved, square both sides:
$(\sqrt{x+2})^{2}=(x-4)^{2}$ Then you get $x+2=x^{2}-8 x+16$. Set $=0$ getting $x^{2}-9 x+14=0$. Factor the quadratic getting $(x-7)(x-2)=0$. Solving you get $x=7$ or $x=2.7$ checks but 2 does not, so the answer is $\mathrm{x}=7$.
52. Solve $|\mathrm{x}-2|<3$ For absolute value with less than, there are two cases: $\mathrm{x}-2<3$ and $\mathrm{x}-2>-3$. Solving the first gives $\mathrm{x}<5$; solving the second gives $\mathrm{x}>-1$. Therefore $-1<\mathrm{x}<5$
53. $4!=4 \times 3 \times 2 \times 1=24$
54. $-3 x>12+x$ Subtract x from both sides gives $-4 x>12$. Divide both sides by -4 giving $x<-3$. Remember, when you multiply or divide an inequality by a negative, the inequality reverses.

