UNIT 3 • MODELING AND ANALYZING QUADRATIC FUNCTIONS Lesson 1: Creating and Solving Quadratic Equations in One Variable

Instruction

Prerequisite Skills

This lesson requires the use of the following skills:

- multiplying polynomials (A–APR.1)
- writing quadratic equations in standard form (A–CED.1*)

Introduction

A trinomial of the form $x^2 + bx + \left(\frac{b}{2}\right)^2$ can be written as the square of a binomial, $\left(x + \frac{b}{2}\right)^2$, and is called a **perfect square trinomial**. We can solve quadratic equations by transforming the quadratic expression into a perfect square trinomial and taking square roots to solve.

Key Concepts

- A **quadratic expression** has the form $ax^2 + bx + c$.
- When the binomial (x + a) is squared, the resulting perfect square trinomial is $x^2 + 2ax + a^2$.
- When the binomial (ax + b) is squared, the resulting perfect square trinomial is $a^2x^2 + 2abx + b^2$.

Completing the Square to Solve Quadratic Equations of the Form $ax^2 + bx + c = 0$

- 1. Make sure the equation is in standard form, $ax^2 + bx + c = 0$.
- 2. Subtract *c* from both sides of the equation.
- 3. If *a* is not equal to 1, divide each term by *a* to get a leading coefficient of 1.
- 4. Add the square of one-half of *b* to both sides to complete the square.
- 5. Express the perfect square trinomial as the square of a binomial.
- 6. Solve by taking the square root of both sides of the equation.

Common Errors/Misconceptions

- neglecting to subtract the *c* term from both sides of the equation
- not isolating *x* after squaring both sides
- forgetting that, when taking the square root, both the positive and negative roots must be considered (±)