UNIT 3 • MODELING AND ANALYZING QUADRATIC FUNCTIONS

Lesson 1: Creating and Solving Quadratic Equations in One Variable

Instruction

Prerequisite Skills

This lesson requires the use of the following skills:

- multiplying polynomials (A-APR.1)
- writing quadratic equations in standard form (A-CED.1 ${ }^{\star}$)

Introduction

A trinomial of the form $x^{2}+b x+\left(\frac{b}{2}\right)^{2}$ can be written as the square of a binomial, $\left(x+\frac{b}{2}\right)^{2}$, and is called a perfect square trinomial. We can solve quadratic equations by transforming the quadratic expression into a perfect square trinomial and taking square roots to solve.

Key Concepts

- A quadratic expression has the form $a x^{2}+b x+c$.
- When the binomial $(x+a)$ is squared, the resulting perfect square trinomial is $x^{2}+2 a x+a^{2}$.
- When the binomial $(a x+b)$ is squared, the resulting perfect square trinomial is $a^{2} x^{2}+2 a b x+b^{2}$.

Completing the Square to Solve Quadratic Equations of the Form $a x^{2}+b x+c=0$

1. Make sure the equation is in standard form, $a x^{2}+b x+c=0$.
2. Subtract c from both sides of the equation.
3. If a is not equal to 1 , divide each term by a to get a leading coefficient of 1 .
4. Add the square of one-half of b to both sides to complete the square.
5. Express the perfect square trinomial as the square of a binomial.
6. Solve by taking the square root of both sides of the equation.

Common Errors/Misconceptions

- neglecting to subtract the c term from both sides of the equation
- not isolating x after squaring both sides
- forgetting that, when taking the square root, both the positive and negative roots must be considered (\pm)

