UNIT 3 • MODELING AND ANALYZING QUADRATIC FUNCTIONS Lesson 1: Creating and Solving Quadratic Equations in One Variable

Instruction

Guided Practice 3.1.6

Example 1

Solve $x^2 - 8x + 16 = 4$.

1. Determine if $x^2 - 8x + 16$ is a perfect square trinomial.

Take one-half of the value of *b* and then square the result. If this is equal to the value of *c*, then the expression is a perfect square trinomial.

$$\left(\frac{b}{2}\right)^2 = \left(\frac{-8}{2}\right)^2 = 16$$

 $x^2 - 8x + 16$ is a perfect square trinomial because the square of one-half of -8 is 16.

2. Write the left side of the equation as a binomial squared.

One-half of *b* is –4, so the left side of the equation can be written as $(x - 4)^2$.

 $(x-4)^2 = 4$

3. Take the square root of both sides of the equation to solve for *x*.

$(x-4)^2 = 4$	Perfect square trinomial
$x - 4 = \pm 2$	Take the square root of both sides.
$x = 4 \pm 2$	Add 4 to both sides.
x = 4 + 2 = 6 or $x = 4 - 2 = 2$	Separate the result into two equations and solve for <i>x</i> .

4. Determine the solution(s).

The equation has two solutions, x = 2 and x = 6.

Instruction

Example 2

Solve $x^2 + 6x + 4 = 0$ by completing the square.

1. Determine if $x^2 + 6x + 4$ is a perfect square trinomial.

Take one-half of the value of *b* and then square the result. If this is equal to the value of *c*, then the expression is a perfect square trinomial.

$$\left(\frac{b}{2}\right)^2 = \left(\frac{6}{2}\right)^2 = 9$$

 $x^2 + 6x + 4$ is not a perfect square trinomial because the square of one-half of 6 is not 4.

2. Complete the square.	
-------------------------	--

$x^2 + 6x + 4 = 0$	Original equation
$x^2 + 6x = -4$	Subtract 4 from both sides.
$x^2 + 6x + 3^2 = -4 + 3^2$	Add the square of one-half of <i>b</i> to both sides of the equation to complete the square.
$x^2 + 6x + 9 = 5$	Simplify.

Express the perfect square trinomial as the square of a binomial.
One-half of *b* is 3, so the left side of the equation can be written as

 $(x + 3)^2$. $(x + 3)^2 = 5$

UNIT 3 • MODELING AND ANALYZING QUADRATIC FUNCTIONS Lesson 1: Creating and Solving Quadratic Equations in One Variable

Instruction4. Take the square root of both sides of the equation to solve for x. $(x + 3)^2 = 5$ Equation from the previous step $x+3=\pm\sqrt{5}$ Take the square root of both sides. $x=-3\pm\sqrt{5}$ Subtract 3 from both sides.5. Determine the solution(s).The equation $x^2 + 6x + 4 = 0$ has two solutions, $x = -3\pm\sqrt{5}$.

Example 3

Solve $5x^2 - 50x - 120 = 0$ by completing the square.

1. Determine if $5x^2 - 50x - 120 = 0$ is a perfect square trinomial.

The leading coefficient is not 1.

First divide both sides of the equation by 5 so that a = 1.

 $5x^2 - 50x - 120 = 0$ Original equation

 $x^2 - 10x - 24 = 0$ Divide both sides by 5.

Now that the leading coefficient is 1, take one-half of the value of b and then square the result. If the expression is equal to the value of c, then the quadratic expression is a perfect square trinomial.

$$\left(\frac{b}{2}\right)^2 = \left(\frac{-10}{2}\right)^2 = 25$$

 $x^2 - 10x - 24$ is not a perfect square trinomial because the square of one-half of -10 is 25, not -24.

UNIT 3 • MODELING AND ANALYZING QUADRATIC FUNCTIONS Lesson 1: Creating and Solving Quadratic Equations in One Variable

Instruction

2. Complete the square.		
$x^2 - 10x - 24 = 0$	Equation from the previous step	
$x^2 - 10x = 24$	Add 24 to both sides.	
$x^2 - 10x + (-5)^2 = 24 + (-5)^2$	Add the square of one-half of <i>b</i> to both sides of the equation to complete the square.	
$x^2 - 10x + 25 = 49$	Simplify.	
•		
3. Express the perfect square trinomial as the square of a binomial.		
One-half of <i>b</i> is -5 , so the left side of the equation can be written as $(x-5)^2$.		
$(x-5)^2 = 49$		
4. Isolate <i>x</i> .		
$(x-5)^2 = 49$	Equation	
$x - 5 = \pm \sqrt{49} = \pm 7$	Take the square root of both sides.	
$x = 5 \pm 7$	Add 5 to both sides.	
x = 5 + 7 = 12 or $x = 5 - 7 = -2$	Separate the result into two equations and solve for <i>x</i> .	
5. Determine the solution(s).		
The equation $5x^2 - 50x - 120 = 0$ has two solutions, $x = -2$ and $x = 12$.		