UNIT 3 • MODELING AND ANALYZING QUADRATIC FUNCTIONS

Guided Practice 3.1.6

Example 1

Solve $x^{2}-8 x+16=4$.

1. Determine if $x^{2}-8 x+16$ is a perfect square trinomial.

Take one-half of the value of b and then square the result. If this is equal to the value of c, then the expression is a perfect square trinomial.

$$
\left(\frac{b}{2}\right)^{2}=\left(\frac{-8}{2}\right)^{2}=16
$$

$x^{2}-8 x+16$ is a perfect square trinomial because the square of one-half of -8 is 16 .
2. Write the left side of the equation as a binomial squared.

One-half of b is -4 , so the left side of the equation can be written as $(x-4)^{2}$.

$$
(x-4)^{2}=4
$$

3. Take the square root of both sides of the equation to solve for x.

$$
\begin{array}{ll}
(x-4)^{2}=4 & \text { Perfect square trinomial } \\
x-4= \pm 2 & \text { Take the square root of both sides. } \\
x=4 \pm 2 & \text { Add } 4 \text { to both sides. } \\
x=4+2=6 \text { or } x=4-2=2 & \begin{array}{l}
\text { Separate the result into two } \\
\text { equations and solve for } x .
\end{array}
\end{array}
$$

4. Determine the solution(s).

The equation has two solutions, $x=2$ and $x=6$.

UNIT 3 • MODELING AND ANALYZING QUADRATIC FUNCTIONS

Lesson 1: Creating and Solving Quadratic Equations in One Variable
Instruction

Example 2

Solve $x^{2}+6 x+4=0$ by completing the square.

1. Determine if $x^{2}+6 x+4$ is a perfect square trinomial.

Take one-half of the value of b and then square the result. If this is equal to the value of c, then the expression is a perfect square trinomial.

$$
\left(\frac{b}{2}\right)^{2}=\left(\frac{6}{2}\right)^{2}=9
$$

$x^{2}+6 x+4$ is not a perfect square trinomial because the square of one-half of 6 is not 4 .
2. Complete the square.

$$
\begin{array}{ll}
x^{2}+6 x+4=0 & \text { Original equation } \\
x^{2}+6 x=-4 & \text { Subtract } 4 \text { from both sides. } \\
x^{2}+6 x+3^{2}=-4+3^{2} & \begin{array}{l}
\text { Add the square of one-half of } b \text { to both } \\
\text { of the equation to complete the square. }
\end{array} \\
x^{2}+6 x+9=5 & \text { Simplify. }
\end{array}
$$

3. Express the perfect square trinomial as the square of a binomial.

One-half of b is 3 , so the left side of the equation can be written as $(x+3)^{2}$.

$$
(x+3)^{2}=5
$$

UNIT 3 • MODELING AND ANALYZING QUADRATIC FUNCTIONS

4. Take the square root of both sides of the equation to solve for x.

$$
\begin{array}{ll}
(x+3)^{2}=5 & \text { Equation from the previous step } \\
x+3= \pm \sqrt{5} & \text { Take the square root of both sides. } \\
x=-3 \pm \sqrt{5} & \text { Subtract } 3 \text { from both sides. }
\end{array}
$$

5. Determine the solution(s).

The equation $x^{2}+6 x+4=0$ has two solutions, $x=-3 \pm \sqrt{5}$.

Example 3

Solve $5 x^{2}-50 x-120=0$ by completing the square.

1. Determine if $5 x^{2}-50 x-120=0$ is a perfect square trinomial.

The leading coefficient is not 1 .
First divide both sides of the equation by 5 so that $a=1$.

$$
\begin{array}{ll}
5 x^{2}-50 x-120=0 & \text { Original equation } \\
x^{2}-10 x-24=0 & \text { Divide both sides by } 5
\end{array}
$$

Now that the leading coefficient is 1 , take one-half of the value of b and then square the result. If the expression is equal to the value of c, then the quadratic expression is a perfect square trinomial.

$$
\left(\frac{b}{2}\right)^{2}=\left(\frac{-10}{2}\right)^{2}=25
$$

$x^{2}-10 x-24$ is not a perfect square trinomial because the square of one-half of -10 is 25 , not -24 .

UNIT 3 • MODELING AND ANALYZING QUADRATIC FUNCTIONS

2. Complete the square.

$$
\begin{array}{ll}
x^{2}-10 x-24=0 & \text { Equation from the previous step } \\
x^{2}-10 x=24 & \text { Add } 24 \text { to both sides. } \\
x^{2}-10 x+(-5)^{2}=24+(-5)^{2} & \begin{array}{l}
\text { Add the square of one-half of } b \\
\text { to both sides of the equation to } \\
\text { complete the square. }
\end{array} \\
x^{2}-10 x+25=49 & \text { Simplify. }
\end{array}
$$

3. Express the perfect square trinomial as the square of a binomial.

One-half of b is -5 , so the left side of the equation can be written as $(x-5)^{2}$.
$(x-5)^{2}=49$
4. Isolate x.

$(x-5)^{2}=49$	Equation
$x-5= \pm \sqrt{49}= \pm 7$	Take the square root of both sides.
$x=5 \pm 7$	Add 5 to both sides.
$x=5+7=12$ or $x=5-7=-2$	Separate the result into two equations and solve for x.

5. Determine the solution(s).

The equation $5 x^{2}-50 x-120=0$ has two solutions, $x=-2$ and $x=12$.

