UNIT $2 \cdot$ REASONING WITH LINEAR EQUATIONS AND INEQUALITIES

Lesson 6: Functions and Graphing

Practice 2.6.2: Domain and Range

Use what you know about functions, domain, and range to answer each question.

1. Could the following table represent a function? Why or why not?

\boldsymbol{x}	\boldsymbol{y}
1	7
2	6
3	5
4	4
5	3
6	2

2. Could the following table represent a function? Why or why not?

\boldsymbol{x}	\boldsymbol{y}
0	1
2	3
4	5
6	7
8	9
10	1

3. Could the following graph be a function? Why or why not?

UNIT 2 • REASONING WITH LIINEAR EQUATIONS AND INEQUALITIES

Lesson 6: Functions and Graphing

4. Could the following graph be a function? Why or why not?

5. Does the following set of ordered pairs make up a relation? If so, is the relation also a function? Why or why not?
$\{(2,4),(3,6),(4,8),(5,10),(6,12),(7,14)\}$
6. Does the following set of ordered pairs make up a relation? If so, is the relation also a function? Why or why not?
$\{(2,2),(3,3),(4,4),(5,5),(5,6),(7,7)\}$
7. What are the domain and range of the graphed function?

UNIT 2 • REASONING WITH LIINEAR EQUATIONS AND INEQUALITIES

Lesson 6: Functions and Graphing

8. What are the domain and range of the graphed function?

9. A candle burns down at a rate of 1 inch per hour. The candle was originally 12 inches tall. The function that describes the height of the candle as it burns can be represented as $f(x)=-x+12$, where x represents the number of hours the candle burns and $f(x)$ is the height of the candle. Draw a graph of the function. What are the domain and range?
10. The distance covered by a train moving along its tracks at 40 mph is modeled by the function $f(x)=40 x$, where x is time and $f(x)$ is the distance travelled by the train. What are the domain and range of the function?
